TensorMol

Tensorflow + Molecules = TensorMol


Project maintained by jparkhill Hosted on GitHub Pages — Theme by mattgraham

-Title signature by Alex Graves’ handwriting LSTM https://arxiv.org/abs/1308.0850

PyPI version Documentation Status

Authors:

Kun Yao (kyao@nd.edu), John Herr (jherr1@nd.edu), David Toth (dtoth1@nd.edu), Ryker McIntyre(rmcinty3@nd.edu), Nicolas Casetti, John Parkhill (john.parkhill@gmail.com)

Model Chemistries:

Simulation Types:

News:

License: GPLv3

By using this software you agree to the terms in COPYING

Installation:

Demo of training a neural network force field using TensorMol:

Test example for TensorMol01:

Timing Information

TensorMol is robust and fast. You can get an BP+electrostatic energy and force of this monstrous cube of 24,000 atoms in less than 100 seconds on a 2015 MacbookPro (Core i7 2.5Ghz, 16GB mem). Periodic simulations are about 3x more expensive.

Usage:

Sample Results

Biological molecules

Because Neural network force fields do not rely on any specific atom typing or bond topology, the agony of setting up simulations of biological molecules is greatly reduced. This gif is a periodic optimization of PDB structure 2EVQ, in explicit polarizable TensorMol solvent.

Chemical Reactions

Converged nudged elastic band simulations of the cyclization cascade of endiandric acid C (c.f. K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, 1982, The endiandric acid cascade. Electrocyclizations in organic synthesis. 4. Biomimetic approach to endiandric acids A-G. Total synthesis and thermal studies, J. Am. Chem. Soc. 104(20):5560–5562).

This reaction path can be found in a few minutes on an ordinary laptop. Relaxation from the linearly interpolated guess looks like this:

The associated energy surface is shown below.

Dynamic Properties

Publications and Press:

Requirements:

Acknowledgements:

Common Issues:

sh clean.sh